
File System Reliability

Main Points

• Problem posed by machine/disk failures
• Transaction concept
• Reliability
– Careful sequencing of file system operations
– Copy-on-write (WAFL, ZFS)
– Journalling (NTFS, linux ext4)
– Log structure (flash storage)

• Availability
– RAID

File System Reliability

• What can happen if disk loses power or
machine software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• File system wants durability (as a minimum!)
– Data previously stored can be retrieved (maybe

after some recovery step), regardless of failure

Storage Reliability Problem
• Single logical file operation can involve updates to

multiple physical disk blocks
– inode, indirect block, data block, bitmap, …
– With remapping, single update to physical disk block

can require multiple (even lower level) updates
• At a physical level, operations complete one at a

time
– Want concurrent operations for performance

• How do we guarantee consistency regardless of
when crash occurs?

Transaction Concept

• Transaction is a group of operations
– Atomic: operations appear to happen as a group,

or not at all (at logical level)
• At physical level, only single disk/flash write is atomic

– Durable: operations that complete stay completed
• Future failures do not corrupt previously stored data

– Isolation: other transactions do not see results of
earlier transactions until they are committed

– Consistency: sequential memory model

Reliability Approach #1:
Careful Ordering

• Sequence operations in a specific order
– Careful design to allow sequence to be interrupted

safely
• Post-crash recovery
– Read data structures to see if there were any

operations in progress
– Clean up/finish as needed

• Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)

FAT: Append Data to File

• Add data block
• Add pointer to

data block
• Update file tail to

point to new MFT
entry

• Update access
time at head of
file

FAT: Append Data to File

Normal operation:
• Add data block
• Add pointer to data

block
• Update file tail to point

to new MFT entry
• Update access time at

head of file

Recovery:
• Scan MFT
• If entry is unlinked,

delete data block
• If access time is

incorrect, update

FAT: Create New File

Normal operation:
• Allocate data block
• Update MFT entry to

point to data block
• Update directory with

file name -> file number
– What if directory spans

multiple disk blocks?

• Update modify time for
directory

Recovery:
• Scan MFT
• If any unlinked files (not

in any directory), delete
• Scan directories for

missing update times

FFS: Create a File
Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free

blocks
• Update directory with file

name -> file number
• Update modify time for

directory

Recovery:
• Scan inode table
• If any unlinked files (not

in any directory), delete
• Compare free block

bitmap against inode
trees

• Scan directories for
missing update/access
times

Time proportional to size of
disk

FFS: Move a File
Normal operation:
• Remove filename from

old directory
• Add filename to new

directory

Recovery:
• Scan all directories to

determine set of live
files

• Consider files with valid
inodes and not in any
directory
– New file being created?
– File move?
– File deletion?

FFS: Move and Grep

Process A

move file from x to y
mv x/file y/

Process B

grep across x and y
grep x/* y/*

Will grep always see
contents of file?

Application Level
Normal operation:
• Write name of each open

file to app folder
• Write changes to backup

file
• Rename backup file to be

file (atomic operation
provided by file system)

• Delete list in app folder
on clean shutdown

Recovery:
• On startup, see if any files

were left open
• If so, look for backup file
• If so, ask user to compare

versions

Careful Ordering

• Pros
– Works with minimal support in the disk drive
– Works for most multi-step operations

• Cons
– Can require time-consuming recovery after a failure
– Difficult to reduce every operation to a safely

interruptible sequence of writes
– Difficult to achieve consistency when multiple

operations occur concurrently

Reliability Approach #2:
Copy on Write File Layout

• To update file system, write a new version of
the file system containing the update
– Never update in place
– Reuse existing unchanged disk blocks

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server
appliances (WAFL, ZFS)

Copy on Write/Write Anywhere

Copy on Write/Write Anywhere

Copy on Write Batch Update

FFS Update in Place

WAFL Write Location

Copy on Write Garbage Collection

• For write efficiency, want contiguous
sequences of free blocks
– Spread across all block groups
– Updates leave dead blocks scattered

• For read efficiency, want data read together to
be in the same block group
– Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks

Copy On Write

• Pros
– Correct behavior regardless of failures
– Fast recovery (root block array)
– High throughput (best if updates are batched)

• Cons
– Potential for high latency
– Small changes require many writes
– Garbage collection essential for performance

Logging File Systems

• Instead of modifying data structures on disk
directly, write changes to a journal/log
– Intention list: set of changes we intend to make
– Log/Journal is append-only

• Once changes are on log, safe to apply
changes to data structures on disk
– Recovery can read log to see what changes were

intended
• Once changes are copied, safe to remove log

Redo Logging
• Prepare
– Write all changes (in

transaction) to log
• Commit
– Single disk write to make

transaction durable
• Redo
– Copy changes to disk

• Garbage collection
– Reclaim space in log

• Recovery
– Read log
– Redo any operations for

committed transactions
– Garbage collect log

Before Transaction Start

After Updates Are Logged

After Commit Logged

After Copy Back

After Garbage Collection

Redo Logging
• Prepare
– Write all changes (in

transaction) to log
• Commit
– Single disk write to make

transaction durable
• Redo
– Copy changes to disk

• Garbage collection
– Reclaim space in log

• Recovery
– Read log
– Redo any operations for

committed transactions
– Garbage collect log

Questions

• What happens if machine crashes?
– Before transaction start
– After transaction start, before operations are

logged
– After operations are logged, before commit
– After commit, before write back
– After write back before garbage collection

• What happens if machine crashes during
recovery?

Performance

• Log written sequentially
– Often kept in flash storage

• Asynchronous write back
– Any order as long as all changes are logged before

commit, and all write backs occur after commit
• Can process multiple transactions
– Transaction ID in each log entry
– Transaction completed iff its commit record is in

log

Redo Log Implementation

Transaction Isolation

Process A

move file from x to y
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after
changes are logged, but
before commit?

Two Phase Locking

• Two phase locking: release locks only AFTER
transaction commit
– Prevents a process from seeing results of another

transaction that might not commit

Transaction Isolation
Process A

Lock x, y
move file from x to y

mv x/file y/
Commit and release x,y

Process B

Lock x, y, log
grep across x and y

grep x/* y/* > log
Commit and release x, y,

log

Grep occurs either before
or after move

Serializability

• With two phase locking and redo logging,
transactions appear to occur in a sequential
order (serializability)
– Either: grep then move or move then grep

• Other implementations can also provide
serializability
– Optimistic concurrency control: abort any

transaction that would conflict with serializability

Caveat
• Most file systems implement a transactional

model internally
– Copy on write
– Redo logging

• Most file systems provide a transactional model
for individual system calls
– File rename, move, …

• Most file systems do NOT provide a transactional
model for user data
– Historical artifact (imo)

Question

• Do we need the copy back?
– What if update in place is very expensive?
– Ex: flash storage, RAID

Log Structure

• Log is the data storage; no copy back
– Storage split into contiguous fixed size segments

• Flash: size of erasure block
• Disk: efficient transfer size (e.g., 1MB)

– Log new blocks into empty segment
• Garbage collect dead blocks to create empty segments

– Each segment contains extra level of indirection
• Which blocks are stored in that segment

• Recovery
– Find last successfully written segment

Storage Availability

• Storage reliability: data fetched is what you stored

– Transactions, redo logging, etc.

• Storage availability: data is there when you want it

– More disks => higher probability of some disk failing

– Data available ~ Prob(single disk working)k

• If failures are independent and data is spread across k disks

– For large k, probability system works -> 0

RAID

• Replicate data for availability
– RAID 0: no replication
– RAID 1: mirror data across two or more disks
• Google File System replicated its data on three disks,

spread across multiple racks
– RAID 5: split data across disks, with redundancy to

recover from a single disk failure
– RAID 6: RAID 5, with extra redundancy to recover

from two disk failures

RAID 1: Mirroring

• Replicate writes to
both disks

• Reads can go to
either disk

Parity

• Parity block: Block1 xor block2 xor block3 …

10001101 block1
01101100 block2
11000110 block3

00100111 parity block

• Can reconstruct any missing block from the others

RAID 5: Rotating Parity

RAID Update
• Mirroring
– Write every mirror

• RAID-5: to write one block
– Read old data block
– Read old parity block
– Write new data block
– Write new parity block

• Old data xor old parity xor new data

• RAID-5: to write entire stripe
– Write data blocks and parity

Non-Recoverable Read Errors

• Disk devices can lose data
– One sector per 1015 bits read
– Causes:
• Physical wear
• Repeated writes to nearby tracks

• What impact does this have on RAID
recovery?

Read Errors and RAID recovery

• Example
– 10 1 TB disks, and 1 fails
– Read remaining disks to reconstruct missing data

• Probability of recovery =
(1 – 10-15)^(9 disks * 8 bits * 1012 bytes/disk)
= 93%

• Solutions:
– RAID-6: two redundant disk blocks

• parity, linear feedback shift

– Scrubbing: read disk sectors in background to find and
fix latent errors

